Swapping Colored Tokens on Graphs
نویسندگان
چکیده
We investigate the computational complexity of the following problem. We are given a graph in which each vertex has an initial and a target color. Each pair of adjacent vertices can swap their current colors. Our goal is to perform the minimum number of swaps so that the current and target colors agree at each vertex. When the colors are chosen from {1, 2, . . . , c}, we call this problem c-Colored Token Swapping since the current color of a vertex can be seen as a colored token placed on the vertex. We show that c-Colored Token Swapping is NP-complete for c = 3 even if input graphs are restricted to connected planar bipartite graphs of maximum degree 3. We then show that 2-Colored Token Swapping can be solved in polynomial time for general graphs and in linear time for trees. Besides, we show that, the problem for complete graphs is fixedparameter tractable when parameterized by the number of colors, while it is known to be NP-complete when the number of colors is unbounded.
منابع مشابه
The Time Complexity of the Token Swapping Problem and Its Parallel Variants
The problems of Permutation Routing via Matching and Token Swapping are reconfiguration problems on graphs. This paper is concerned with the complexity of those problems and a colored variant. For a given graph where each vertex has a unique token on it, those problems require to find a shortest way to modify a token placement into another by swapping tokens on adjacent vertices. While all pair...
متن کاملSwapping Labeled Tokens on Graphs
Consider a puzzle consisting of n tokens on an n-vertex graph, where each token has a distinct starting vertex and a distinct target vertex it wants to reach, and the only allowed transformation is to swap the tokens on adjacent vertices. We prove that every such puzzle is solvable in O(n) token swaps, and thus focus on the problem of minimizing the number of token swaps to reach the target tok...
متن کاملApproximation and Hardness of Token Swapping
Given a graph G = (V,E) with V = {1, . . . , n}, we place on every vertex a token T1, . . . , Tn. A swap is an exchange of tokens on adjacent vertices. We consider the algorithmic question of finding a shortest sequence of swaps such that token Ti is on vertex i. We are able to achieve essentially matching upper and lower bounds, for exact algorithms and approximation algorithms. For exact algo...
متن کاملTight Exact and Approximate Algorithmic Results on Token Swapping
Given a graph G = (V,E) with V = {1, . . . , n}, we place on every vertex a token T1, . . . , Tn. A swap is an exchange of tokens on adjacent vertices. We consider the algorithmic question of finding a shortest sequence of swaps such that token Ti is on vertex i. We are able to achieve essentially matching upper and lower bounds, for exact algorithms and approximation algorithms. For exact algo...
متن کاملOn the zero forcing number of some Cayley graphs
Let Γa be a graph whose each vertex is colored either white or black. If u is a black vertex of Γ such that exactly one neighbor v of u is white, then u changes the color of v to black. A zero forcing set for a Γ graph is a subset of vertices Zsubseteq V(Γ) such that if initially the vertices in Z are colored black and the remaining vertices are colored white, then Z changes the col...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2015